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Tetrandrine (TET) has been known to possess anti-cancer properties in wide variety of cancers, however, 
the underlying mechanism for hepatocellular carcinoma (HCC) have not been fully elucidated. We focused 
our investigation the effect of TET on programmed cell death and growth of HepG2 cancer cell live. 
TET was found to significantly inhibit the proliferation of HepG2 cells, with an half maximal inhibitory 
concentration (IC50) of 7.76 μmol/L. Fluorescence microscopy showed that after 48 h of TET exposure, 
the cells presented morphological alterations typical of apoptosis while normal cellular morphology was 
preserved in the control. Staining with propidium iodide (PI), followed by flow cytometry showed that 
following 48 h TET treatment at 3.75, 7.5, and 15 μmol/L, the rate of apoptosis in HepG2 was 5.1%, 
19.7%, and 36.9%, respectively. Western blotting was done to study the effect of TET on the expression 
profile of proteins involved in Hippo signalling pathway. We observed that in response to 48 h incubation 
with TET, there was a significant upregulation of the expression levels of MST1 (mammalian sterile 
20-like kinase 1), LATS1 (large tumor suppressor kinase 1), and P-YAP1 while the expression levels of 
YAP1 (Yes-associated protein 1) and TAZ (transcriptional coactivator with PDZ-binding motif) were 
downregulated. Taken together, these results indicated that the anti-cancer activity of TET on HepG2 cells 
may be due to the modulation of Hippo signalling pathway.

INTRODUCTION

The hepatocellular carcinoma (HCC) is one of the 
predominant cancers accounting for about a third 

of cancer related mortality (Torre et al., 2015). Surgical 
resection remains the first choice of treatment for early-
stages of HCC (Zhang and Sun, 2015), however, its 
efficiency is limited due to delayed clinical diagnosis, 
which usually occurs when the cancer has progressed to 
intermediate or advanced stage. Recurrence rate of HCC 
upon curative hepatectomy is high and it is then tackled 
using targeted drug therapy with sorafenib, which although 
suffers from issues of incomplete suppression of HCC and 
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drug resistance (Llovet et al., 2008). Therefore, the focus 
is towards the development of new and effective drugs.

One of the drugs being explored is tetrandrine (TET), 
extracted from the roots of Stephania tetrandra (Wang et 
al., 2004; Bhagya and Chandrashekar, 2018). TET is an 
alkaloid belonging to the bis-benzylisoquinoline family 
and induces apoptosis and autophagy in mammalian oral 
and gastric cancer cells (Liu et al., 2008; Lien et al., 2017; 
Bai et al., 2018). It also induces apoptosis as well as hinders 
the proliferation of human bladder and prostate cancer 
cells (Li et al., 2011; Liu et al., 2015). Despite the studies, 
underlying mechanism of anti-cancer activity against the 
HCC and other cancer types is not fully understood. One 
of the hypotheses suggests the dysregulation of Hippo 
signalling pathway as a possible cause of HCC (Zender 
et al., 2006; Kowalik et al., 2011). In normal cells, this 
pathway is responsible for regulation of cell growth, 
apoptosis, and differentiation (Irvine, 2012; Camargo 
et al., 2007). In mammalian cells, it comprises protein 
kinases MST1/2 and LATS1/2 along with its downstream 
effectors YAP, and TEADs, and the paralog TAZ (Ma et 
al., 2015; Hong et al., 2016; Edgar, 2006). Activation of 
MST1/2 triggers the LATS1/2 to induce phosphorylation 
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of YAP/TAZ followed by degradation (Zhao et al., 2007; 
Yi et al., 2016; Song et al., 2018). Elevated levels of YAP 
have been found in samples of hepatitis B virus-induced 
HCC (Pan, 2010; Lu et al., 2013), thus supporting the 
previous hypothesis. The present work was carried out to 
study the antiproliferative and apoptotic effects of TET in 
human liver cancer cell line, HepG2. We inferred that TET 
may have an impact on the biological functions such as 
the proliferation and apoptosis of HepG2 cells through the 
Hippo signalling pathway, and provide new ideas for the 
treatment of HepG2.

MATERIALS AND METHODS

Cell culture
HepG2 cells were procured from the Engineering 

Research Centre for Medicine at Harbin University of 
Commerce (Harbin, China). RPMI-1640 medium (Gibco; 
Thermo Fisher Scientific, Inc., MA, USA) supplemented 
with 10% (v/v) foetal bovine serum (Tianhang Biological 
Technology Co. Ltd., China) was used to culture the cells 
at 37 ℃ in a 5% CO2 environment. A cell density of about 
80% indicated the logarithmic growth phase.

Assay for cell viability (CCK-8 assay)
One hundred microliters of the HepG2 cells (cell 

density 3×104 cells/mL) digested with 0.25% pancreatin, 
were inoculated in a 96-well plate. Six parallel wells were 
set up for each group. After 24 h of incubation, 100 μL 
each of TET (purity, ≥98%; Aladdin Reagent Co., Ltd., 
China) or hydroxy camptothecin (HCPT; purity, ≥ 98%; 
Medican Pharmaceutical Co., Ltd., China) were added to 
each well to get a final concentration of 2, 4, 8, 16, and 
32 μmol/L or 1, 2, 4, 8, and 16 μmol/L, respectively, 
while sterile RPMI-1640 (100 μL) served as control, and 
incubated further for 72 h at 37 ℃. To each well, 10 μL 
of CCK-8 solution (Beyotime Institute of Biotechnology, 
China) was added and incubation was carried out at 37 ℃ 
for 2 h (Shang et al., 2021). A microplate reader was used 
to measure the absorbance at 450 nm, which was used to 
determine the inhibition rate and IC50.

Apoptotic morphology assay
A 6-well plate was inoculated with HepG2 cells 

(3×104 cells/mL) grown in RPMI-1640, with a coverslip 
inside each well. After 24 h, TET (3.75, 7.5, or 15 μmol/L) 
was added to each well, HCPT (7 μmol/L) served as 
positive control, while in negative control sterile RPMI-
1640 was added. Incubation was carried out for 48 h after 
which sterile phosphate-buffered saline (PBS) was used 
to wash the HepG2 cells, followed by fixing in 1 mL of 
4% buffered paraformaldehyde at 4 ℃ for 1 h. PBS was 

used to wash the cells and the cells were stained with 5 
mg/L Hoechst 33258 fluorescent probe (Sigma-Aldrich, 
St. Louis, MO, USA) by incubation in dark for 30 min at 
37 ℃ (Ji and Yu, 2015). The excess stain was removed by 
washing the cells with PBS. The coverslip was removed 
from each well and examined under a fluorescence 
microscope (CKX-41-32, Olympus Corporation, Japan).

Apoptosis rate assay
A 6-well plate was inoculated with HepG2 cells 

(3×104 cells/mL grown in RPMI-1640) and TET (3.75, 
7.5, or 15 μmol/L) was added at 24 h. The incubation was 
continued for 48 h after followed by overnight incubation 
in 70% ethanol at 4 ℃ to fix the cells. After incubation, 
PBS was used to wash the cells. Staining with PI (Sigma-
Aldrich) 50 μg/mL was carried out for 30 min at 37 ℃. 
The apoptosis was analysed by flow cytometry (EPICS-
XL; Beckman Coulter, Inc., USA).

Western blotting
HepG2 cells were plated in culture flasks (1×106 

cells/mL) followed by addition of TET (3.75, 7.5, or 15 
μmol/L) at 24 h. After 48 h, the collected cells were lysed 
and cellular protein was extracted. Protein quantification 
was done by the bicinchoninic acid method (Solarbio 
Science and Technology Co., Ltd., Beijing, China). For 
western blotting (Wang et al., 2021), 12% SDS-PAGE 
gel electrophoresis was carried out with 50 μg of protein 
(20 μL loading volume). Protein transfer was done onto 
nitrocellulose membrane and blocking was carried out 
with 5% skim milk for 1 h after which incubation was 
done with primary antibodies (rabbit anti-human binding 
immunoglobulin protein; MST1, bs-3504R; LATS1, bs-
2904R; P-LATS1, bs-7913R; YAP1, bs-52418R; P-YAP1, 
bs-3475R; TAZ, bs-12367R; BIOSS) at 4 ℃ overnight. 
Upon washing, secondary antibodies were added to 
the membrane and incubation was carried out at room 
temperature (Goat anti-rabbit IgG horseradish peroxidase; 
A0192; Beyotime Institute of Biotechnology) for 2 h. 
ECL Chemiluminescence Kit (P0018AS-1,2; Beyotime 
Institute of Biotechnology) was used to visualise the bands 
which were photographed and analysed with a gel imaging 
system (GIS-2019; Tanon Science and Technology Co., 
Ltd., China).

Statistical analysis
The data from each experiment were recorded as 

mean ± standard deviation. The results were evaluated by 
One-way ANOVA. To analyse the data, SPSS software 
for Windows version 18.0 (SPSS, Inc., USA) was used. 
Statistically significant differences between groups were 
defined as P values less than 0.05.
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RESULTS

Antiproliferative effects of TET
Treatment with TET was found to inhibit the 

proliferation of HepG2 cells. The inhibition followed 
a dose-dependent pattern. The IC50 was calculated to be 
7.76 μmol/L (Table I, Fig. 1), in comparison to the positive 
control HCPT, which was 7.18 μmol/L (Table I).

Table I. Inhibitory effect of TET and HCPT treatment 
on cell proliferation of 24 h old HepG2 cells.

Groups Concentration 
(μmol/L)

Optical density Inhibition 
rate (%)

Control – 0.801 ±0.088 –
TET 2 0.654 ±0.095** 18.21

4 0.487 ±0.091** 39.19
8 0.337 ±0.051** 57.89
16 0.253 ±0.031** 68.36
32 0.256 ±0.046** 68.41

HCPT 1 0.675 ±0.083** 15.76
2 0.565 ±0.052** 29.49
4 0.549 ±0.039** 31.41
8 0.397 ±0.016** 50.41
16 0.248 ±0.034** 69.29

Compared with control group, **P<0.01. Date was expressed as means 
± SD (n=6).

Fig. 1. Inhibitory effect of TET treatment on cell 
proliferation of 24 h old HepG2 cells.

TET induces morphological changes in HepG2 cells
Fluorescence microscopic examination of control 

group shows uniform fluorescence in the cell nuclei. 

Incubation with various concentrations of TET or 7 
μmol/L HCPT for 48 h, showed the presence of apoptosis 
related changes in the HepG2 cells, such as chromatin 
condensation and formation of apoptotic bodies (Fig. 2).

Fig. 2. Fluorescent micrographs showing TET induced 
morphological changes in HepG2 cells visualized after 
Hoechst 33258 staining (200× magnification): (A) Control; 
(B) HCPT (7 μmol/L); (C) TET (3.75 μmol/L); (D) TET 
(7.5 μmol/L); and (E) TET (15 μmol/L).

TET induces apoptosis in HepG2 cells
TET administration showed a dose dependent 

increase in the total number of apoptotic cells as compared 
to control, and the effect was found to be statistically 
significant. The results are summarised in (Table II, Fig. 
3).

Table II. TET causes an increased apoptosis in HepG2 
cells.

Groups Concentration (μmol/L) Apoptosis rate (%)
Control – 1.579 ±0.197
HCPT 7 21.197 ±1.459**

TET 3.75  5.125 ±0.797**

7.5 19.698 ±1.860**

15 36.882 ±1.511**

Compared with control group, **P<0.01. Date was expressed as means 
± SD (n=3).

TET treatment affects the expression of MST1, LATS1, 
P-LATS1, and P-YAP1

Treatment with 3.75, 7.5, and 15 μmol/L TET or 7 
μmol/L HCPT for 48 h caused a significant upregulation 
(P<0.01) of the MST1, LATS1, P-LATS1, and P-YAP1 
expression. The effects were found to be concentration-
dependent (Fig. 4).

Tetrandrine Induces the Apoptosis of HepG2 Cells via the Hippo Pathway 3
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with TET or HCPT followed by PI staining, using a flow 
cytometer (A) Control; (B) HCPT (7 μmol/L); (C) TET 
(3.75 μmol/L); (D) TET (7.5 μmol/L); and (E) TET (15 
μmol/L).

Fig. 4. Protein expression profile after 48 h TET treatment 
(3.75, 7.5, or 15 μmol/L) HepG2 cells. Western blots 
represent (A) MST1, (B) LATS1, (C) P-LATS1, and (D) 
P-YAP1. (**P<0.01, vs control).

TET downregulates the expression of YAP1 and TAZ
Treatment with 3.75, 7.5, and 15 μmol/L TET or 7 

μmol/L HCPT for 48 h caused a significant downregulation 
(Fig. 5) in the expression levels of YAP1 and TAZ in 
comparison to the control group (P<0.05). The decrease 
was gradual and coincided with the dose of TET used.

Fig. 5. Expression profile proteins participating in Hippo 
signalling pathway in HepG2 cells upon 48 h TET 
treatment (3.75, 7.5, or 15 μmol/L). Western blots represent 
(A) YAP1 and (B) TAZ. (**P<0.01, *P<0.05).

DISCUSSION

The disturbance of Hippo signalling pathway disrupts 
the balance between the cellular proliferation and apoptosis 
and may lead the cell towards cancerous state (Zhao et 
al., 2008). Therefore, Hippo signalling pathway is being 
considered a potential target for anticancer drug research. 
The Hippo signalling pathway was first discovered in 
Drosophila, and it is highly conserved during evolution. 
It is homologous to MST1/2, human Salvador 1 (hSAV1), 
LATS1/2, Mps One Binder inaseactivator-like1 (MOB1), 
YAP / TAZ and TEA domain family member (TEAD) in 
mammals (Dong et al., 2007). The core components of 
the Hippo signal pathway include LATS and MST, both of 
which have important regulatory roles in the Hippo signal 
pathway. The LATS gene was identified from Drosophila in 
1995 and was found to express LATS1 and LATS2. MST is 
a serine/threonine kinase-like enzyme found in yeast cells. 
Subsequent studies have found that LATS and MST can 
significantly inhibit tumor cell proliferation and promote 
tumor cell apoptosis, suggesting that these may act as tumor 
suppressor genes (Furth et al., 2015). YAP gene is highly 
expressed in many human cancer tissues and cells, which 
accelerates the proliferation of tumor cells and inhibits 
apoptosis. A high level of YAP expression corresponds 
to a lower the degree of tumor differentiation as well as 
with a shorter survival period of the patient. Therefore, 
reducing the expression level of YAP in tumor cells may 
help in tumor treatment. YAP, as a transcription factor of 
the TEAD/TEF family, is a downstream target gene of 
the Hippo pathway and a nuclear auxiliary transcription 
factor. In mammals, the Hippo signalling pathway inhibits 
YAP nuclear translocation to achieve cell apoptosis in 
mammals. The mechanism is that dephosphorylated YAP 
combines with TAZ to transfer into and accumulate in the 
nucleus to form transcription factor complexes and induce 
the expression of target genes.

F. Wang et al.
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The results of this study show that TET can activate 
MST1 and increase the level of protein expression. LATS1 
was phosphorylated under the influence of MST1, and 
the activated LATS1 phosphorylates the downstream 
targets YAP and TAZ, resulting in the nucleus knocking 
out the inactive YAP and TAZ. Phosphorylated YAP and 
TAZ cannot combine with the transcription factor TEAD 
to convey growth and development signals, thereby 
inhibiting the proliferation of HepG2 cells through the 
Hippo signaling pathway.

CONCLUSION

In the present study a possible mechanism for the 
action of TET on HepG2 cells and consequently on the 
Hepatocellular carcinoma was investigated. We found 
an inhibition in cell proliferation as well as induction 
of apoptosis in HepG2 cells following TET treatment. 
Incubation with TET could also inhibit cell growth and 
cause a dose-dependent increase in the rate of apoptosis. 
One of the possible mechanisms proposed for the 
development of cancer is the disruption of the Hippo 
signalling pathway. TET treatment could efficiently 
obstruct the expression of YAP HepG2 cells which was 
evident in the expression profile. Cumulatively, these 
results suggest that anti-cancer effects of TET against 
HepG2 cells can be attributed to modulation of the Hippo 
signalling pathway. We will continue to explore the anti-
tumor mechanism of TET, use quantitative RT-PCR to 
verify the expression protein-related genes, and explore 
the underlying targets of TET on HepG2 cells through 
proteomics.
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